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A novel decoupled Multi-Input-Multi-Output Model Free Control strategy is presented in
this paper to improve the performance of an active suspension system implemented on a
half car model. To damp vibrations generated by road excitation, an algebraic online com-
pensator was integrated in the structure of a classical PID controller to avoid the impact of
unpredictable disturbances. The key element of the proposed technique is a non-asymptotic
observer that can avoid the use of statistical conventional techniques. Furthermore, the ad-
vantage of easy implementation is achieved where only two accelerometers are sufficient
and adequate. A comparison with classical PID and LQR is provided to demonstrate the
improvement made by the proposed scheme.

Keywords:Model Free Control, intelligent-PID controller, ultra-local model, on-line observer

1. Introduction

Following the development of technology, the automotive field is increasingly concentrating on
improving vehicle ride comfort and security. Basically, a suspension system has the fundamen-
tal role to guarantee required comfort while avoiding road shocks from the cabin. Therefore,
researchers have developed several types of suspension systems with integrated methods for
controlling manoeuvrability of the car in real driving conditions. Those strategies can be di-
vided into three groups: passive, semi-active (Maciejewski et al., 2019) and active approaches
(Łuczko and Ferdek, 2016), which is the most used (Rajamani, 2011).
Active suspensions provide an additive actuating force integrated in the closed loop control.

The control power depends greatly on the choice of appropriate control schemes. Recently, many
advanced active control strategies were developed by using different kinds of control techniques
such as Linear Quadratic Regulator (LQR) (Ferdek and Łuczko, 2015), adaptive control (Hua et
al., 2018), fuzzy control (Senthil Kumar et al., 2018), neural network control (Phu et al., 2018)
and linear tracking control based on a high gain observer (Hasbullah and Faris, 2017). Particu-
larly, Model Free Control (MFC) (Fliess and Join, 2013) is an effective technique to realize multi-
-objective and modifications in the feedback control and estimation process. In recent years, this
strategy has been applied in several fields. The power of the intelligent controller resides in
estimating on-line perturbations without the need of a classical state observer such as Kalman
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filter. The method is easily implemented and avoids the difficult task of coefficient tuning. Only
the knowledge of the input-output behaviour of the plant is needed for updating the controller
parameters automatically.
The present work is based on the theory of intelligent controllers which are proposed by

Fliess and Join (2013). Several studies were carried to integrate this control method to a quarter
car model which is a two degree of freedom vehicle ride model. For example, a novel intelligent-
-PD controller for the quarter car model was proposed by Haddar et al. (2019b). Furthermore,
Haddar et al. (2017) suggested a method for classical Active Disturbances Rejection Control
(ADRC) (Hasbullah et al., 2015) to ameliorate the dynamic response and prevent the problem
of uncertainty parameters. Wang et al. (2018) proposed a Model Free Control based on the
fractional-order sliding mode. Besides, a combination between the sliding mode control and
disturbance observer was presented by Pusadkar et al. (2019). To avoid the problem of chattering,
Wang et al. (2019) proposed a new integral sliding mode strategy applied to a quarter car model.
In fact, the tuning of intelligent controller parameters is quite simple (Haddar et al., 2019b) while
the calibration process of ADRC (Hasbullah and Faris, 2017) is more complicated since it has
many tuning parameters to be chosen by the designer. Furthermore, due to the choice of the
classical Extended State Observer bandwidth (Pusadkar et al., 2019; Wang et al., 2019), a trade-
-off between the tracking performance and the perturbation rejection can be found (Pan et al.,
2015).
The presented technique in this paper takes advantage of the fast algebraic estimator (Fliess

and Join, 2013) combined with an ultra-local generic model, avoiding using complex models
in tracking control. In addition, the algebraic derivative method is used to provide a fast non-
-asymptotic state estimation in closed loop control. Also, this method is robust with respect to
modelling errors and parametric uncertainties, even during critical running conditions, where
such a recalibration is recommended. Moreover, a smaller number of sensors is required compared
to traditional predictive controllers. The main contributions of this paper can be summarized
as follows:

• Robustness: the proposed control technique performs well with respect to a large class of
perturbations. The i-PID guarantees safety of the driver and satisfies the required perfor-
mances.

• An improvement of computation time: obviously, the control strategy should have as small
as possible computation time in order to provide fast, real-time, online estimations for
processes with fast dynamics, and this estimation is not offline. This can be made possible
thanks to the use of algebraic filters.

• Easy implementation and design: i-PID controller has a lower complexity problem com-
pared to LQR. It is a simple control structure, with excellent tracking accuracy and insen-
sitivity to unpredictable disturbance. Further, its simple structure and design methodology
are also proven by the usage of a smaller number of sensors.

The organization of the paper is as follows: a half car model and its mathematical equations
are presented in Section 2. Section 3 describes the Multi-Input-Multi-Output model free control
technique and its principle features. The effectiveness of the proposed controller is illustrated in
Section 4 with a comparative scenario between passive, PID and LQR controllers. For highlight-
ing the superiority of ride comfort quality, Section 5 presents a discussion about the robustness
of the i-PID controller. Finally, the conclusion is given in Section 6.

2. Half car model

In previous works, researchers have been mostly interested in simple quarter car models with
two degrees of freedom (Haddar et al., 2019b). In this work, a half car model with four degrees of
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freedom is presented. However, for improved model accuracy, this study is extended for testing
an example with Multi-Input-Multi-Output (MIMO) and introducing some adaptations to the
controller in order to reach a global controller with better performances and a low number of
sensors. As shown in Fig. 1, the model of a half car is different than a simple quarter car model

Fig. 1. (a) Suspension model with four degrees of freedom. (b) Diagram of control of MIMO model free
control for the half car system

by the virtue of the presence of vehicle pitch motion. For this linear model, we assume that the
pitch angle of the car body at the center of gravity CG is small enough.The equations of motion
of the half car model are illustrated as

msz̈s = −ks1(zs1 − zu1)− ks2(zs2 − zu2)− ds1(żs1 − żu1)− ds2(żs2 − żu2) + FA,1 + FA,2

Iyy θ̈ = ks1(zs1 − zu1)a− ks2(zs2 − zu2)b+ ds1(żs1 − żu1)a

− ds2(żs2 − żu2)b− FA,1a+ FA,2

mu1z̈u1 = ks1(zs1 − zu1) + ds1(żs1 − żu1)− kt1(zu1 − zr1)− FA,1

mu2z̈u2 = ks2(zs2 − zu2) + ds2(żs2 − żu2)− kt2(zu2 − zr2)− FA,2

(2.1)

Two relations between the body displacement and pitch motions can give expressions of displace-
ments of sprung mass at the front and the rear tires respectively: zs1 = zs−aθ and zs2 = zs+bθ.
The description of states is as follows: zs [m] is the displacement of the CG. θ [rad] is the

pitch angle. Front and rear unsprung mass displacements rate are zu1 and zu2, respectively. Front
and rear sprung mass displacements are zs1 and zs2 [m]. Front and rear road profiles excitations
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are zr1 and zr2 [m]. FA,1 and FA,2 [N] are front and rear actuator force inputs. FA,i are inputs
of the servo-hydraulic actuator to produce the required active force to the system (i is the i-th
side of the half car). According to León-Vargas et al. (2018), the dynamics of a servo-hydraulic
active suspension actuator can be modelled as follows

GA,i(s) =
1

1
75s+ 1

In order to emphasize the feasibility of an intelligent controller in the case of a MIMO system,
the objective of the paper is to adapt this kind of controller in the case of a linear half car
system. Obviously, the control strategy gets more complex as the number of degrees of freedom
increases. Thus, additional sensors are required. For these reasons and to avoid the use of many
sensors for cost restrictions, a simplified system model is sufficient to show the effectiveness of the
proposed scheme with low sensing capability. Then uncertainties and nonlinearities are added
to discuss the results in terms of usefulness and effectiveness of i-PID to reject perturbations
online. As aforementioned, the proposed scheme is based on the PID control method which
has the advantage of being easily implementable in common industrial processes. However, PID
control loses its capability when the working conditions change. On other hand, the LQR is better
than PID in the sense that it gives the desired output with less control effort. Nevertheless, more
sensing capability is required for controlling the four degrees of freedom model. In most cases,
this necessitates a larger amount of electronic components and increases equipment cost. Similar
to PID, LQR lacks the robustness property to cope with external disturbances. Based on the
two controller shortcomings; i-PID can be an attractive alternative for the design of a new active
controller to improve ride comfort performance of the half car model. Table 1 gives values of
each parameter given in the previous equations.

Table 1. Half car parameters (León-Vargas et al., 2018)

Variable Definition Value/Unit

ms Mass of car body 580 kg

Iyy Pitch moment of inertia 1100 kgm2

mu1 Unsprung mass on front wheel 40 kg

mu2 Unsprung mass on rear wheel 40 kg

ks,1 Front suspension stiffness coefficient 23500N/m

ks,2 Rear suspension stiffness coefficient 23500N/m

ds1 Front tire damping coefficient 1500Ns/m

ds2 Rear tire spring coefficient 1600Ns/m

kt1 Front spring coefficient 190000 N/m

kt2 Rear tire spring coefficient 190000 N/m

a Distance of front axle to COM 1.0m

b Distance of rear axle to COM 1.5m

3. Model free control technique

An intelligent controller is able to update online its scaling parameters under different conditions
(Fliess and Join, 2013). The key element of an intelligent controller is elimination of the use
of a sophisticated model and rejection of un-modeled perturbations online. The design of an
i-PID controller based on algebraic tools was detailed in Haddar et al. (2019a). In fact, the
proposed finite estimation for disturbance rejection, which is algebraically designed, can avoid
the use of statistical and asymptotic estimation techniques. Furthermore, the implementation is
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fast compared to methods that use statistical techniques like using the Kalman filter for LQR
controller. The most important advantage is that the identification can be made online and, in
particular, in a closed loop in the presence of noise. The mathematical model of the controlled
half car can be replaced by two ultra-local model equations with a reduced number of scaling
parameters. Fliess and Join (2013) illustrated the expression of ultra-local-model as follows

y
(n)
i = φi + αiFA,i (3.1)

where yi is the measured signal, FA,i is the power delivered by the actuator, i is the i-th side of
the half car, n is equal to 2. For getting φi and αiFA,i with the same magnitude, the operator
should be fixed constant αi ∈ R. Internal and external phenomena that should be compensated
are regrouped in the term φi.
The feedback loop of classical PID control is modified and will incorporate a cancellation

term that represents the output of the algebraic estimator. The i-PID controller is given by

FA,i = −
φ̂i
αi︸ ︷︷ ︸

Cancellation term

+
ÿref,i − (KP,ie+KI,i

∫
e+KD,iė)

αi︸ ︷︷ ︸
Closed loop tracking

(3.2)

where: e = yi−yref,i is the tracking error, yref,i is the reference trajectory and is set to zero in this
work (Wang et al., 2018), yi is the measured acceleration on the left corner of the upper mass for
i = 1 and represents the measured acceleration on the right corner of the upper mass for i = 2,
KP,i, KI,i and KD,i are the proportional gain, integral gain and derivative gain respectively, i is
the i-th side of the half car.
The differential algebra rules required to design the finite time estimator of φ̂i are summarized

in the following steps (Haddar et al., 2019a):

Step 1 – Laplace transformation of Eq. (3.1),

Step 2 – twice differentiation process of the previous equation with respect to the complex
terms s for cancelling out initial conditions,

Step 3 – avoiding the positive power introduced by the highest degree of s and multiplying both
sides by s−3,

Step 4 – passing from the Laplace domain to time domain and following the operational calculus
rules (Fliess and Join,2013).

Those steps yield an algebraic estimator with low complexity to be implemented in real time
and which is characterized by

φ̂i =
60

L5

t∫

t−L

(L2 − 6σL+ 6σ2)yi(σ)−
αi
2
(L− σ)2σ2FA,i(σ) dσ (3.3)

The window of integration [t, t− L] should be designed by small width L for goodness of iden-
tification and reduced time computation.
The advantage of estimators given above can be represented in two important points: 1) un-

like classical observer, there is no need for any information about initial conditions and this
decreases the complexity of implementation, 2) the implementation in real case is not expensive
and can be achieved with digital filters. In fact, the integrals in Eq. (3.3) function as low pass fil-
ters, which generally reduces the impact of noise and exogenous disturbances of a noise-corrupted
signal.
A block diagram of the model-free control implemented in the case of the half car is summa-

rized in Fig. 1b. The scheme shows that neglected parts can be compensated without knowledge
of the model by using the above information of the control signal FA,i (front and rear actuator
force inputs) and the output signals z̈s,i. The two accelerometers are implemented on the left
and right corner of the sprung mass.
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4. Simulation results

In order to show the effectiveness of the proposed controller in the dynamic behaviour of the
half car system, a comparison with PID and LQR in both time and frequency domains has been
investigated.

In terms of conceptual design, the i-PID and PID controllers are simpler than LQR. However,
PID and LQR design require exact information about the vehicle model and its dynamics.
Frequently, an empirical process is adopted to select the optimal control gains. Meanwhile, the
i-PID controller is able to adequately tune its scaling parameters online under different driving
conditions.

The controller concept was created to minimize the cost functional index

J =

∞∫

0

[
xT(t)Qx(t) + 2xT(t)NFALQR(t) + F

T
ALQR
(t)RFALQR(t)

]
dt (4.1)

where FALQR = −Klqrx is the actuator force produced by LQR controller. x is an 8 × 1 state

vector: x = [z̈s, θ̈, zs1 − zu1, zs2 − zu2, żs1, żs2, zu1 − zr1, zu2 − zr2]
T. As indicated before, the

implementation process is more complicated in the case of LQR. LQR has a drawback that it
assumes that all the states given by x are measurable. An observer for different states should be
designed such as the Kalman Filter (see Haddar et al., 2019a). Q, R and N are the regulator
settings depending on the weighting parameters ρk, k = 0, . . . , 11

J =

∞∫

0

[
ρ0z̈
2
s + ρ1θ̈

2 + ρ2(zs1 − zu1)
2 + ρ3(zs2 − zu2)

2 + ρ4ż
2
s1 + ρ5ż

2
s2

+ ρ6(zu1 − zr1)
2 + ρ7(zu2 − zr2)

2 + ρ8ż
2
u1 + ρ9ż

2
u2 + ρ10F

2
A1 + ρ11F

2
A2

]
dt

(4.2)

Q, R and N are weighted to get a good ride quality without significant sacrifice in suspension
deflection and tire deflection (Wakeham and Rideout, 2011; Rajamani, 2011)

Klqr = 10
4

[
−0.2596 0.0739 1.4495 0.0373 0.9439 0.0418 −0.4197 −0.0164
−0.7628 0.0053 −2.8081 −0.2541 −0.4362 −0.0141 1.5129 0.0641

]

(4.3)

Ride comfort is the key element to be investigated. For this reason, a bumpy road profile is
chosen to be the first excitation type to investigate the dynamic response of the vehicle. To
identify the transient-response features of the proposed model free control, the bumpy road
curve is used. The mathematical equation of the road bump is

zr(t) =






H0[1− cos(ωrt)]
2π

ωr
¬ t ¬

4π

ωr
0 otherwise

(4.4)

where: ωr = 2πVh/D, Vh = 12m/s is the vehicle speed, H0 = 0.08m is height of the bump,
D = 9.1m is longitudinal distance.

4.1. Time domain responses

Time responses of the vehicle dynamics are illustrated in Figs. 2-6. These figures provide
comparisons between uncontrolled and controlled models.
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Fig. 2. Displacement responses of: (a) vehicle body, (b) pitch motion

• Minimizing the bump effect – the smaller maximum peaks in the presence of the bump and
the lowest settling time are achieved by i-PID as shown in Fig. 2. In fact, the estimated
signals included in φ̂i, are able to enhance the system transient response and to cancel the
impact of offset.

• Ride comfort – passive system shows the worst vibration attenuation compared to systems
equipped by active controllers. In Table 2, the i-PID strategy allows one to produce the
lowest level of vertical and pitch acceleration amplitude than LQR controller and PID (the
highest level of attenuation percentage is obtained by i-PID by 66% for vertical acceleration
and 59% for angular acceleration). Furthermore, the i-PID controller has fastest transient
response as depicted in Figs. 3 and 4. The estimated signals included in different terms φ̂i
act as an additive damping force for providing better oscillatory comfort.

• Suspension deflection – Figure 5 shows active half car models deflection compared with the
uncontrolled case. The RMS values given by Table 2 indicate that i-PID is able to prevent
the system from beating its travel limits more than PID and LQR. It is known that
the improving of ride comfort with LQR presents a trade-off with suspensions deflection
criteria. The controlled half car model must not exceed the limit given as ±0.1m.

• Road holding – the contact between the wheel and the road should be maximized. As
given by Fig. 6 and Table 2, i-PID technique can be thought of as a compromising control
strategy among other classical control techniques. In order to ensure driving safety and
road holding stability, the dynamic load of the tire should be smaller than its static load.
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Table 2. The RMS values of different motions

χRMS =
‖χ‖

n

√
1

n

n∑
i=1
χ2i Passive PID LQR i-PID

Body acceleration z̈s 0.7883 0.3686 (↑53%) 0.5101 (↑35%) 0.2606 (↑66%)

Angular acceleration θ̈ 0.1291 0.0605 (↑53%) 0.0762 (↑40%) 0.0521 (↑59%)

Front acceleration z̈s1 0.7596 0.3923 (↑48%) 0.5059 (↑33%) 0.2860 (↑62%)

Rear acceleration z̈s2 0.8663 0.3451 (↑60%) 0.5369 (↑38%) 0.2467 (↑71%)

Body displacement 0.0214 0.0161 (↑24%) 0.0173 (↑19%) 0.0138 (↑35%)

Angular displacement θ 0.0080 0.0018 (↑77.5%) 0.0066 (↑16%) 0.0015 (↑81%)

Front suspension deflection
0.0180 0.0148 (↑18%) 0.0161 (↑10.5%) 0.0142 (↑22%)

zs1 − zu1
Rear suspension deflection

0.0112 0.0081 (↑28%) 0.0099 (↑12%) 0.0059 (↑47%)
zs2 − zu2
Front tire deflection 0.0024 0.0015 (↑37.5%) 0.0017 (↑30%) 0.0013 (↑46%)

Rear tire deflection zu2 − zr2 0.0015 0.0006 (↑60%) 0.0009 (↑40%) 0.0005 (↑66%)

Fig. 3. Acceleration responses of: (a) vehicle body, (b) pitch motion
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Fig. 4. Acceleration responses on: (a) front, (b) rear corner of the upper mass

The magnitude of normalized tire deflection for each side should be lower than unity

NTD1 =
kt1(zu1 − zr1)

9.81
( bms
a+ b

+mu1
) < 1 NTD2 =

kt2(zu2 − zr1)

9.81
( ams
a+ b

+mu2
) < 1 (4.5)

Different presented active suspension algorithms show good road holding since the dynamic
tire load did not exceed the static tire load in any case. Moreover, the RMS amelioration
with the i-PID algorithm is higher than that exhibited by the PID and LQR controllers.
i-PID is able to cope with the conflicting demands between ride comfort and road holding.

• Actuator force – the cancellation term, in the feedback loop, could compensate the distur-
bance produced by the road profile. In fact, it allows one to bring the dynamic response
back to steady state faster and enhances attenuation of oscillations. The i-PID controller
performed better in terms of ride comfort, good road holding and best rattle space. How-
ever, with i-PID, some penalty is given to the actuator force compared to LQR controller
(Fig. 7).

4.2. Frequency domain responses

To further investigate the performance of the integrated intelligent controller, frequency
plots of different transfer functions with respect to front and rear excitations, respectively, in
the frequency band [0-20] Hz] are presented in Figs. 8 and 9.
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Fig. 5. Time-domain response of (a) front and (b) rear suspension deflection

Generally, it can be concluded that i-PID control improves the response at the sprung mass
natural frequency more than other controllers. On the one hand, to achieve good ride comfort, a
minimization of the vertical acceleration should be attempted in the frequency range from 4Hz
to 8Hz (according to ISO 2631(1997)). The different plots of the frequency responses show that
the proposed controller yields a lower value of gain over the mentioned frequency band. Thus,
the proposed controller improves ride comfort.

In the case of LQR, the advantage of increasing the ride comfort was coupled with a little in-
crease in the response at the wheel mass natural frequency. The transfer functions of suspension
deflections are enhanced at unsprung and sprung mass peak resonances. Nonetheless, the per-
formances are worse at low frequencies. The tire deflection transmissibility is enhanced at both
resonant frequencies. In fact, this result given by LQR depends on the choice of the weighting
factors in matrices Q and R (Faris et al., 2009). There is a trade-off between performances. In
fact, different cases according to Rajamani (2011) are adopted (empirical tuning of weighting
matrices). As a result, the tuning of LQR is not straightforward as the i-PID controller.

The intelligent part in PID control improves the response at the peak resonance of the
sprung mass natural frequency while slightly increasing the response at the unsprung mass
natural frequency. As already seen from the time responses, the i-PID controller is more efficient
than other techniques and provides a good compromise between required performances.
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Fig. 6. Time-domain response of (a) front and (b) rear tire deflection

5. Parametric sensitivity

In most applications, the design of active suspension control is heavily oriented to ride com-
fort criteria. As a final case study, a verification of the robustness of the proposed strategy in
analyzing parametric sensitivity under variable load and speed of the vehicle is carried out.

5.1. Variation of vehicle load

In reality, vehicle mass is variable and should be considered as an uncertain parameter.
Regarding robustness, the model free control design is able to handle the sprung mass uncertainty
and maintain the same level of required performance. In the simulation study presented below,
RMS is assumed to vary in the interval with an increment of 10%. Figure 10 and Table 3 show
the sprung mass acceleration with variation of body mass in the case of different controllers.

In the case of PID, the peak to peak levels of body acceleration is decreased with augmenting
body mass quantities. The settling time is more sensitive to variation of the mass in the case of
passive and LQR controller. Clearly, under variable load, LQR requires a new calibration, and
the weighting factors should be changed in matrices Q and R. In fact, a precise mathematical
model of the half car system is required to recalculate the gain K. In general, it can be seen
that i-PID is able to reject online the perturbation caused by the increasing payload. Moreover,
the feedback process included in i-PID is independent of the half car model parameters.
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Fig. 7. Required power energy: (a) front and (b) rear control input

5.2. Variation of vehicle speed

In order to investigate the influence of vehicle speed variation on ride comfort quality, the
half car system is driven on a random road profile ISO class A with an initial velocity speed
equal to 15m/s. Therefore, at t = 10 s, with the same speed, the vehicle is driven under road
class B. At t = 20m/s the speed increases from 15m/s to 20m/s, and there is a permutation
between road roughness from road class B to road class C. The equation of a random road profile
is presented as follows

żri(t) = −2πVspeedn0zri(t) + 2π
√
G0Vspeedw(t) (5.1)

where zri(t) is the front and rear random road displacement, Vspeed is the vehicle velocity,
w(t) represents the random signal with a zero mean unity variance, n0 = 0.1 is the spatial
frequency, equal to 0.1 cycle/m, G0 is the road roughness coefficient which depends on the
road class (ISO8608, 1995). In this paper: G0(Road A = 16 · 10

−6m2/cycles/m), G0(Road B =
64 · 10−6m2/cycles/m) and G0(Road C = 256 · 10

−6m2/cycles/m).
According to Fig. 11 and Table 4, it can be seen that the vehicle speed has much impact on

the ride comfort. When changing from road class A to class B (with a speed of 15m/s), the RMS
increases by 50% and when moving from road of class B to class C (with a speed of 20m/s),
the RMS increases by 30% for classical controllers, with the exception of i-PID which shows less
sensitivity. In fact, when changing the speed from 15m/s to 20m/s, the PID and LQR failed
to reduce high oscillation caused by the speed increase. Pure derivative included in the PID
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Fig. 8. Transfer functions of: (a) body acceleration with respect to front excitation, (b) body
acceleration with respect to rear excitation, (c) angular acceleration with respect to front excitation,

(d) angular acceleration with respect to rear excitation

Fig. 9. Transfer functions of: (a) front acceleration with respect to front excitation, (b) front suspension
deflection with respect to front excitation, (c) front tire deflection with respect to front excitation,
(d) rear acceleration with respect to rear excitation, (e) rear suspension deflection with respect to rear

excitation, (f) rear tire deflection with respect to rear excitation
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Fig. 10. Effect of body mass variation on ride comfort

Table 3. The RMS with mass variation

χRMS =
‖χ‖

n

√
1

n

n∑
i=1
χ2i Passive PID LQR i-PID

Unloaded 0.7883 0.3686 0.5163 0.2606

+10% 0.7907 0.3687 0.5146 0.2607

+20% 0.7984 0.3682 0.5008 0.2619

+30% 0.7922 0.3700 0.5001 0.2620

Fig. 11. Effect of vehicle speed and road roughness variation on ride comfort

Table 4. The RMS with road pavement variation and speed variation

χRMS =
‖χ‖

n

√
1

n

n∑
i=1
χ2i Passive PID LQR i-PID

Road class A (V = 15m/s) 0.0060 0.0045 0.0058 0.0038

Road Class B (V = 15m/s) 0.0121 (↑50%) 0.0089 (↑49%) 0.0116 (↑50%) 0.0066 (↑42%)

Road class C (V = 20m/s) 0.0305 (↑80%) 0.0233 (↑80%) 0.0297 (↑80%) 0.0201 (↑62%)
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structure is not ineffective. The attenuation of oscillation requires the use of a low pass filter in
the case of PID and LQR. However, the low pass filters of the algebraic estimator in i-PID are
able to attenuate the effect of noise more that PID and LQR.

5.3. Effect of nonlinearities

In the presence of nonlinearities and disturbance inputs, the required suspension properties
degrade (Rath et al., 2015). For example, a replication of suspension deflection can be achieved
by cubic spring characteristics. In fact, a proposition to show the effectiveness of the i-PID
controller to reject this kind of problems and to guarantee the best ride comfort is shown below.
This scenario is tested when the half car system is subjected to a bump input. The effectiveness
is verified by comparison between RMS values of the linear and nonlinear case. The nonlinear
spring and damper force can be defined as follows

Fspring,i(t) = ks,i(zs,i − zu,i) + kns,i(zs,i − zu,i)
3

Fdamper,i(t) = ds,i(zs,i − zu,i) + dns,i

√
|zs,i − zu,i| sgn (zs,i − zu,i)

(5.2)

where kns,i = 2.35 · 10
6N/m and dns,i = 400Ns/m (Ekoru and Pedro, 2013).

The results depicted in Fig. 12, demonstrate that i-PID maintains its robustness and gives
the best required ride comfort with slight amplification. Furthermore, the required performances
are not degraded. However, there exists an increase of RMS values in the case of LQR and PID.
Generally speaking, the cancelling term in the i-PID equation demonstrates the ability of the
intelligent controller to perform well with nonlinear system and is able to deal with changes
without recalibration of controller parameters.

Fig. 12. Effect of nonlinearities on ride comfort

6. Conclusion

This paper investigated a “Multi-Input-Multi-Output Model Free Control” as a new technique
of control for active half car systems. The proposed controller is established on a classical PID
concept as an online compensator that is able to avoid the need of precise information about the
model. Furthermore, the superiority is highlighted by avoiding different kinds of perturbations
with an online calibration of scaling parameters. As presented by numerical results, the i-PID
controller is able to improve the required performances such as ride comfort, road holding and
rattle space performance compared to traditional controllers in the frequency band range [0-
20] Hz. Moreover, the implementation requires only two sensors (accelerations are measured on
the left and right corner of the upper mass) and can be achieved by low cost instruments. The
robustness to parameter variation is better ensured by the i-PID controller under variation of
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the sprung mass, vehicle speed and nonlinearities. In fact, the recalibration process of tuning
parameters is online. Besides, this intelligent scheme allows one to reduce the actuator force
compared to PID. Future studies will focus on experimental validation of the obtained results.
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